
Jasmine Glaze, 2953164

Logan Michels, 2927340

Sean Cunningham, 2935773

Josh Berkley, 2945294

Suhaib Ansari, 2957919

Team 5: Final Project Design

Project Name:

SwapStream

Project Synopsis:

Web application that seamlessly integrates various music streaming platforms.

Project Description:

The project that our team has decided on deals with integrating various music streaming

platforms for easy user access. Our project has the goal of giving the user the ability to access all

songs on one platform and to seamlessly integrate the music they are listening to into one space.

This solves the problem of having to utilize multiple different streaming sites to get all the music

they are wanting and allows the user to be able to listen to their music in a faster and more

streamlined manner. This will be accomplished through combining various existing platforms

(such as Spotify, Apple Music, SoundCloud, etc) by using their API’s so that all the songs will be

in one place. Our current execution plan is to utilize a combination of typescript, css and html to

create a web application for easy user access. Later on this project could lead to the development

of a mobile application with the same functions as the web application, but with more ease as it

could be utilized more readily on a mobile device.



Project Milestones:

● Gantt Chart:

Task: Oct Nov Dec Feb Mar Apr

Determine and Gather APIs Oct-15th

Set-Up Basic Web Application Nov-15th

Integrate API’s Dec-15th

Debug/Add Functionalities Feb-15th

Stylize User Interface Mar-15th

Finish Documentation Apr-15th

● Fall 2021

○ Oct 15th: Determine and gather the API’s for each streaming service that we

intend on integrating (such as Spotify, Apple Music, etc)

○ Nov 15th: Set up basic web application (no extra design, just bare bones) to get a

baseline for the rest of our project

○ Dec 15th: Integrate API’s and music functionality (start/stop button and a way to

select various songs)

● Spring 2022

○ Feb 15th: Debug program and add in extra functionalities for users ease (such as a

replay button, a way to add songs to a playlist, etc.)

○ March 15th: Web application user interface complete with styling (make the web

application look professional and add graphics as necessary)

○ April 15th: Finish all documentation and any additional materials

● Defining roles:

○ Jasmine Glaze - documentation/status reports/additional assignments



○ Logan Michels - documentation/assist with coding and assignments as needed

○ Sean Cunningham - back end coding and database management

○ Josh Berkley - connecting front end and back end (working closely with both)

○ Suhaib Ansari - front end coding

Project Budget:

The cost of this project would be negligible because the APIs along with the platforms to utilize

these languages are free. There will also be no vendors or special training needed. We will host

our service on Amazon Web Services, which is not a free service, but it does begin free so we

will not need to make a purchase unless we exceed a certain amount of computations. This is

highly unlikely during our testing and would only occur after gathering a real user base.

Final Project Design:

● Back End Software:

Because our project will include lots of user interaction with our web application, we are

creating an extensive front and back end in our software to create something that is

highly functional but also easy for the user to interact with. When user data is needed or

user data is produced, the front end will offload the processing work to the back end by

sending requests to our back end API. This will be handled through the REST standard

for requests. The back end will handle data processing and communication with the

database. This separation of concerns is a key point of our design. This will leave the

front end free to focus on fast rendering speeds and streaming the music. Our back end

service will be written in Python and there will be three divisions of labor: the API which

handles requests and sends responses, the main business logic which will handle all data

processing, and the DAO (Data Access Object) which will send and receive data from the



database. The database

will most likely be

PostgreSQL. We will have

locally hosted testing

databases, but the official

one will be hosted on

AWS servers.

This architecture is a 3-tier

model with an added 3rd

party API configuration that enables access to a user’s streaming service of choice. To

circumnavigate some limitations with some of the streaming service API’s involved, the

database is used to store playlists associated with a user’s account in said streaming

service. For example, if a Spotify user wants to create playlists that belong to an Apple

Music account, the search feature will look through the database and retrieve the playlists

in a JSON package that can be used to generate a playlist in the user’s library for their

usage.

● Front End Software:

Although the back end is very important for this project in terms of functionality, we also

took a lot of consideration when creating a plan for the front end. This is due to the fact

that users will be constantly coming back to the web application to play songs, choose

new music etc. and this needs to be something that the user can use easily. Before a user

can actually use the central playlist sharing feature of this application, new users are

directed to what type of account they use. They then log in through their streaming



service. Beyond that, the design of the front end is simple with three primary

components: in-browser player, search bar, and music display. The display contains the

list of playlists a user has with the service which includes any they upload and any they

get from our database. The name of the playlist, the owner’s username associated with

the streaming service, and the original streaming service (Apple Music, Spotify,

Soundcloud, etc.) will be displayed on each playlist. A user can click on a playlist which

will then change the list to the songs inside of the playlist while displaying the name of

the playlist at the top of the display module. During search, the playlist module will show

results of playlists based on the search. These can be filtered by streaming services or

sorted. The other module is for playing music in your playlists, but can also be used to

load a preview playlist that can be listened to before adding it to their library. If they like

it, they can add it with search. Users can search for playlists based on genre, artists, users,

and other data that the streaming service API allows to view and categorize songs and

playlist.

Display View:

This screen diagram shows the view of the user and the options they have for navigating

between playlists. There are 4 types of lists that can be displayed: library playlists, songs

in a selected library playlist,

search result playlists, songs

in search result playlists/songs

in search results (which

function the same). When

playlists are in the library



mode, the playlists owned by the user are displayed and can be opened. When opened,

the list will transition to the songs in that list. A user can click a song to play it in the

above embedded player. When playlists are in the search mode, there is an additional

option to add the playlist to a library and an option to preview the playlist which will play

all of the songs in order. The playlists can also be clicked to reveal the songs within.

When adding to the library, the songs will also be previewed with the option to remove

any tracks before adding as well as warnings if a song isn’t available in the user’s

streaming service. Even if the user doesn’t remove it at this time, the song will

automatically be deleted from the copied playlist. Below is the class diagram for the front

end.

Frontend Class Diagram:

The classes involved here are

broken down based on user

interactions with the components

of the user interface. Three of

the items that link to the Body

class represent the modules

directly present in the front end

namely “searchModule,”

“playerModule,” and

“listDisplay.” The classes linked

to them below control the states

of the web page through Angular



and Typescript. The fourth class, APIHandler, is invoked when another module needs to

resolve a request to the streaming service API. The other classes are encapsulations of the

data provided to the users. The types of playlists all inherit from the “listDisplay” class,

an approach that uses polymorphism to invoke the functionality for the given list type

through class design.

● Design Constraints:

Some design constraints we may run into include the typical technical examples such as

programming language, operating system or platforms supported and use of a specific

library or framework. In regard to programming languages, because we are still college

students, we do not have experience with every language out there, so we might come to

find out that there may be a better suited language for our project that we do not have in

our repertoire. This could be a constraint because our abilities and overall knowledge of

programming are limited. This sentiment also aligns with the operating system and

library or framework that we are going with. We only know the resources that we know

and we could come to find that we overlooked an option due to our lack of experience. In

regard to business constraints, our team could run into issues in terms of scheduling,

budget, team composition and licensing. Many of these are especially true when it comes

to this sort of project since we are all in college with different schedules, goals and

personalities. With our schedule and team composition, we are going along with the

deadlines that are set for us and trying to accomplish our tasks together while trying to

balance our other commitments and find times that work for everyone. In terms of

budgeting and licensing, these issues could arise, but for now they seem to be non-issues.



Ethical Issues:

This project has few ethical issues due to the purpose of this project being based in creating a

better and more user friendly streaming application for users. We will always do our best to be

honest and trustworthy and keep the principles of the code of ethics in mind throughout the

creation of our project. One ethical issue we might run into, however, is not taking the time to

“respect the work required to produce new ideas, inventions, creative works and computing

artifacts” (principle 1.5). We need to make sure we take the time to credit those we are basing

our project off of and give them credit for their original ideas. As long as we do this and continue

following the code of ethics, we should create a good and ethical final product.

Intellectual Property Issues:

This project has few intellectual property issues due to the nature of all the music we are wanting

to use being publicly downloadable/accessible. One issue we might run into, however, is in terms

of the intellectual property of the streaming applications themselves. We will need to be sure that

we are careful with how similar ours is to the ones we are basing ours off of as to not steal their

intellectual property. This will be mitigated by us not having the source code of these streaming

applications and our lessons we have gleaned through our labs in this class over intellectual

property.

Changing Log:

● Section: Defining Roles

○ Change: Previously we had said that we were not creating roles at the time of the

project description, because we wanted to see how our roles naturally developed

and not force anything so early on. Now we have created roles based on what



each team member is gravitating towards and this is reflected in this modified

section.

● Section: Project Description:

○ Change: Added more detail to the project description to ensure that it meets the

minimum word count.


